
REAL ANALYSIS

TOPIC 33A - SIMPLE CONTINUED FRACTIONS (DRAFT)

PAUL L. BAILEY

Abstract. We seek an example of a perfect set consisting only of irrationals.

To this end, we would like to understand and verify the claim that “the set of
infinite continued fractions using only ones and twos” is such a set.

1. Continued Fractions

1.1. Basis Definitions.

Definition 1. A continued fraction is an expression of the form

a0 +
b1

a1 +
b2

a2 +
b3

a3 +
. . .

,

where a0 ∈ Z, and (an) and (bn) are sequences of positive real numbers, for n ≥ 1.
A continued fraction is simple if bn = 1 for all n. We are only interested in

simple continued fractions.
We admit the possibility of finite sequences. The length of the sequence (an)

is the largest N ∈ N such that aN exists. Sequences of length zero correspond to
integers.

A continued fraction is finite (or terminating) if (an) is a finite sequence. Oth-
erwise, it is infinite (or nonterminating).

A continued fraction represents a real number. This is clear for finite continued
fractions; for example,

2 +
1

3 +
1

5 +
1

7

= 2 +
1

3 +
7

36

= 2 +
36

115
=

266

115
.

We see that a finite continued fraction will always represents a rational number
x ∈ Q such that a0 ≤ x < a0 + 1. In turns out that infinite continued fractions
always converge to some real number x, in a manner that we will make precise as
we proceed.
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We write the number x as given by this sequence with a bracket, followed by an
integer, followed by a semicolon, followed by a sequence of integers separated by
commas:

x = [a0; a1, a2, a3, . . . ] = a0 +
1

a1 +
1

a2 +
1

a3 + ...

.

A finite sequence may be readily evaluated; for example,

[2; 1, 2, 3] = 2 +
1

1 +
1

2 +
1

3

= 2.7.

Finite continued fractions may be written in two ways:

• [a0] = [a0 − 1; 1];
• [a0; a1, a2, . . . , an−1, an] = [a0; a1, a2, . . . , an−1, an − 1, 1].

For example,

[2; 1, 2, 3] = 2 +
1

1 +
1

2 +
1

3

= 2 +
1

1 +
1

2 +
1

2 +
1

1

= [2; 1, 2, 2, 1].

We consider the form on the left to be the standard form; thus, we assume that
finite continued fractions of length at least one do not end in 1.

1.2. The Continued Fraction of a Real Number. Every real number has a
representation as a continued fraction.

Definition 2. Let x ∈ R. The floor of x is

bxc = max{n ∈ Z | n ≤ x}.

Then x − bxc ∈ [0, 1), so its reciprocal has a positive floor. Inductively define a
sequence (xn) by setting

x0 = x and xn+1 =
1

xn − bxnc
.

The continued fraction representation of x is a sequence [a0; a1, a2, . . . ], defined
by an = bxnc.

If xn is an integer, then the sequence is finite and an+1 does not exist.

Note that a0 < 0 if and only if x < 0, and for n ≥ 1, we have an > 0.

Let’s find the continued fraction decomposition of
497

95
.

497

95
= 5 +

22

95
95

22
= 4 +

7

22
22

7
= 3 +

1

7
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So,
497

95
= [5; 4, 3, 7] = 5 +

1

4 +
1

3 +
1

7

.

It should be noted that these are the digits obtained by the Euclidean Algorithm,
which makes repeated use of the Division Algorithm to find the greatest divisor of
two numbers.

497 = 5(95) + 22

95 = 4(22) + 7

22 = 3(7) + 1

Thus gcd(497, 95) = 1. Since every rational number may be written as a frac-
tion whose numerator and denominator are relatively prime, every rational number
which is not an integer has a continued fraction expression which terminates in a

fraction of the form
1

n
, where n ∈ N and n ≥ 2.

We find the continued fraction expansion of
√

2. First note that if x = 2 +
1

2 +
1

2 +
1

2 +
. . .

, then x = 2 +
1

x
, so x2 − 2x − 1 = 0, whence x =

2±
√

4 + 4

2
=

1 +
√

2, since x is positive. Thus
√

2 = x− 1, so
√

2 = 1 +
1

2 +
1

2 +
1

2 +
. . .

= [1; 2, 2, 2, . . . ] = [1; 2].

Proposition 1. Let x ∈ R. Then x is irrational if and only if its continued fraction
is infinite.

Proof. It is easy to see that a finite continued fraction can be resolved into a fraction

of the form
n

m
, where m,n ∈ Z. We wish to see that a rational number always

has a finite continued fraction. We write the fraction in the form x =
n

m
, where

gcd(m,n) = 1. By the division algorithm, write n = mq + r, where 0 ≤ r < m.

Now x = q +
1

m/r
. We repeat this process with

m

r
. Since r < m, this process will

eventually terminate with final remainder 1. Thus the continued fraction expression

for
n

m
is finite. �

Proposition 2. Let x = [a0; a1, a2, . . . , an] with a0 ≥ 1. Then x−1 =
[0; a0, a1, a2, . . . , an].



4

2. Convergents

The continued fraction expression for an irrational number may be viewed as a
sequence of rational numbers, as follows.

Let x be an irrational number, so x has an infinite continued fraction expression,
x = [a0; a1, a2, . . . ]. Let cn = [a0; a1, . . . , an]; we call cn the nth convergent of x.
We would like to know that the sequence (cn) does indeed converge to x.

Each of the convergents is a rational number; thus let
pn
qn

= cn, where

gcd(pn, qn) = 1. There is an inductive relationship between the pn’s, qn’s, and
an’s.

We maintain the following notation for the rest of this section. Keep in mind
that the ai’s, pi’s, qi’s are positive integers (except a0 maybe be any integer), and
that the ci’s are rational numbers of the same sign as x.

Proposition 3. For i ≥ 2, we have

pi = aipi−1 + pi−2;

qi = aiqi−1 + qi−2.

with initial values

p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1.

Proof. We can verify the initial values directly. By induction, we assume that we
have pi = aipi−1 + pi−2 and qi = aiqi−1 + qi−2; we wish to show that pi+1 =
ai+1pi + pi−1 and qi+1 = ai+1qi + qi−1.

The ith convergent is

ci =
pi
qi

= [a0; a1, . . . , ai−1, ai] =
aipi−1 + pi−2
aiqi−1 + qi−2

.

The next continued fraction is formed by replacing ai with ai +
1

ai+1
, so we plug

this into the expressions we have for pi and qi:

ci+1 =
pi+1

qi+1
in lowest form

= [a0; a1, . . . , ai−1, ai +
1

ai + 1
] replacing ai with ai +

1

ai+1
in ci

=

(
ai +

1

ai+1

)
pi−1 + pi−2(

ai +
1

ai+1

)
qi−1 + qi−2

plugging this replacement into pi/qi

=

aipi−1 + pi−2 +
pi−1
ai+1

aiqi−1 + qi−2 +
qi−1
ai+1

expanding

=

pi +
pi−1
ai+1

qi +
qi−1
ai+1

applying the inductive hypothesis

=
ai+1pi + pi−1
ai+1qi + qi−1

multiplying top and bottom by ai+1.
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Thus pi+1 = ai+1pi + pi−1 and qi+1 = ai+1qi + qi−1. �

By convention, set p−1 = 1, q−1 = 0, p−2 = 0, and q−2 = 1; then the formulas
in Proposition 3 hold for all i ≥ 0.

Proposition 4. The sequence (qn) is increasing; that is, for i ≥ 1, we have

qi > qi−1.

Proof. We know that ak and qk are positive integers, for all k ∈ N. Thus

qi = aiqi−1 + qi−2 > aiqi−1 ≥ qi−1.
�

Proposition 5. For i ≥ 1, we have

piqi−1 − pi−1qi = (−1)i−1.

Proof. We verify the base case i = 1, using the initial values

p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1.

Then piqi−1 − pi−1qi = p1q0 − p0q1 = (a0a1 + 1) · 1− a0 · a1 = 1 = (−1)(1−1).
By induction, we assume that pi−1qi−2 − pi−2qi−1 = (−1)i−2, and attempt to

show that piqi−1 − pi−1qi = (−1)i−1.
By Proposition 3,

pi = aipi−1 + pi−2 and qi = aiqi−1 + qi−2.

Solving each of these equations for ai, then equating the ai’s, gives

pi − pi−2
pi−1

=
qi − qi−2
qi−1

.

Cross multiply to get

piqi−1 − pi−2qi−1 = qipi−1 − qi−2pi−1.
Rearrange this to obtain

piqi−1 − qipi−1 = −(pi−1qi−2 − pi−2qi−1).

By our inductive hypothesis, the left hand side is −(−1)i−2 = (−1)i−1, which
completes the proof. �

Proposition 6. For i ≥ 1, we have

ci − ci−1 =
(−1)i−1

qi−1qi
.

Proof. Divide the equation which is the result of Proposition 5 by qi−1qi. �

Consider the sequence of convergents (cn); in light of the fact that the sequence
(qn) is increasing, the previous proposition shows that the terms of this sequence
are getting closer together. We can say more.

Proposition 7. For i ≥ 2, we have

ci − ci−2 =
ai(−1)i

qi−2qi
.

Proof. Exercise. �

Call a convergent cn even if it n is even, and otherwise call it odd.
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Proposition 8. The sequence of convergents (cn) satisfies:

(a) The sequence even convergents is increasing, and the sequence of odd con-
vergents is decreasing.

(b) Every even convergent is less than every odd convergent.
(c) Every convergent lies between the two preceding convergents.

Proof. First use Proposition 7.If i is even, ci − ci−2 =
ai

qi−2qi
is positive, so the

even convergents are increasing. On the other hand, if i is odd, ci − ci−2 =
−ai
qi−2qi

is negative, so the odd convergents are decreasing. The proves (a)
Next use Proposition 6.
Let ci be an even convergent. Since the odd convergents decrease, we have

ci+1 < ci−1. The sign of ci − ci−1 is (−1)i−1 = −1, so ci < ci−1. However, the
sign of ci+1 − ci is (−1)i, so ci+1 > ci. These inequalities are reversed if i is odd.
Together, we have

ci < ci+1 < ci−1 if i is even and ci−1 < ci+1 < ci if i is odd .

This proves (c).
Finally, pick two convergents ci and cj , where i is even and j is odd. Suppose

i < j. Then i ≥ j− 1, and j− 1 is even. Then ci ≤ cj−1 since the even convergents
are increasing, but cj−1 < cj be the previous paragraph. Thus ci ≤ cj−1 < cj . On
the other hand, if i > j, we have i ≥ j+1, and ci < cj+1 < cj . This proves (b). �

Proposition 9. The sequence of convergents (cn) converges.

Proof. The sequence of even terms is increasing and is bounded above by every odd
term, so it converges, say to L1. The sequence of odd terms is decreasing and is
bounded below by every even term, so it also converges, say to L2. Clearly L1 ≤ L2.
Let ε = L2−L1, and suppose that ε > 0. Then there exists N1 such that all n ≥ N1

and n even implies |L1 − cn| < ε/4, and there exists N2 such that all n ≥ N1 and

n odd implies |L2 − cn| < ε/4. For n bigger than N1 and N2, |cn − cn−1| >
ε

2
.

Let N3 be so large that n ≥ N3 implies qn >
2

ε
. Let N = max{N1, N2, N3}.

Let n > N . Then |cn − cn−1| =
1

qn−1qn
<

1

qn
<
ε

2
. This contradiction proves

the proposition. �

3. Convergents Converge to Home

Consider two finite convergents which differ only in the last position, say

x = [a0; a1, . . . , an, r] and y = [a0; a1, . . . , an, s].

We wish to allow that r and s be any positive real numbers. It is relatively clear
that x = y if and only if r = s. What are the conditions under which x < y or
x > y?
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First, let us drop the requirement that the ai be integers. Instead, we let
α0, . . . , αn ∈ R be positive real numbers, and set

[α0, α1, . . . , αn−1, αn] = α0 +
1

α1 +
1

. . . +
1

αn−1 +
1

αn

.

Note that

[α0, α1, . . . , αn−2, αn−1, αn] = [α0, α1, . . . , αn−2, αn−1 +
1

αn
].

Also, it is clear that

[α0, α1, . . . , αk, . . . , αn] = [α0, α1, . . . , αk−1, [αk, . . . , αn]].

We may use this last observation to perform induction.

Proposition 10. Let α0, α1, . . . , αn, α
′
n ∈ R be positive real numbers. Let x =

[α0, α1, . . . , αn−1, αn] and x′ = [α0, α1, . . . , αn−1, α
′
n]. Suppose αn < α′n. Then

• x < x′ if n is even
• x > x′ if n is odd

Proof. Note that

x = [α0, [α1, α2, . . . , αn−1, αn]] and x′ = [α0, [α1, α2, . . . , αn−1, α
′
n]].

Let y = [α1, α2, . . . , αn−1, αn] and y′ = [α1, α2, . . . , αn−1, α
′
n].

By induction on the length of the sequence, y < y′ if n− 1 is even, and y > y′ if
n− 1 is odd.

Suppose n is even. Then n− 1 is odd, so y > y′, so
1

y
<

1

y′
. Thus, in this case,

x = α0 +
1

y
< α0 +

1

y′
= x′.

Suppose n is odd. Then n− 1 is even, so y < y′, so
1

y
>

1

y′
. Thus, in this case,

x = α0 +
1

y
> α0 +

1

y′
= x′. �

Proposition 11. Let ci and cj be convergents of x, so i is even and j is odd. Then

ci < x < cj .

Proof. Recall the sequence (xn) derived from x by setting x0 = x and xn+1 =
xn − bxnc. Then an = bxnc, so xn ≥ an.

Let ck = [a0; a1, . . . , ak−1, ak], and note that x = [a0; a1, . . . , ak−1, xk]. If k is
even, ck < x, and if k is odd, x < ck. �

Proposition 12. The sequence (cn) of convergents of x converges to x.

Proof. We already know the sequence converges, say to L. But x is an upper bound
for the even terms, so x ≥ L, and x is a lower bound for all the odd terms, so x ≤ L.
Thus x = L. �
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4. A Perfect Set

Proposition 13. Let x ∈ R, and let y = [a0; a1, a2, . . . , ak−1, ak + 1] =
[a0; a1, . . . , ak−1, ak, 1] be a rational number. Then y is a convergent of x if and
only if x is strictly between z1 and z2, where

z1 = [a0; a1, . . . , ak−1, ak, 2], and

z2 = [a0; a1, . . . , ak−1, ak + 2].

Then z1 < x < z2 if k is even, and z2 < x < z1 if k is odd.

Proposition 14. Let y ∈ Q be positive, and let

Uy = {x ∈ R | y is a convergent of x}.
Then Uy is open.

Proposition 15. Let

P = {x ∈ [0, 1]rQ | the continued fraction expression for x has only 1’s and 2’s}.
Then P is perfect set of irrational numbers.

Proof. Why? �

Is the set P above homeomorphic to the Cantor set?
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